
14 CROSSTALK The Journal of Defense Software Engineering June 1998

Software is of paramount importance to the U.S.
military, providing advanced surveillance, intelligence,
and weapons capabilities. However, software develop-

ment projects are often over schedule and over budget, and the
resulting software is delivered with an unacceptable number of
defects. As a result, considerable concern has been expressed
regarding the capability of current software engineering prac-
tices to enable the information dominance desired by the U.S.
military [1]. With current trends in real-time embedded multi-
processor applications, these problems will become increas-
ingly more difficult to alleviate. The demand to provide greater
functionality while reducing cost and cycle time is increasing,
and consequently, system design and development are becom-
ing more complex [2, 3]. A greater portion of this functionality
is being implemented in software, which is becoming more
complex and difficult to develop and which comprises a
greater proportion of the cost of an application [3, 4]. For large
digital signal processing application software, costs are typically
greater than hardware costs, often comprising 70 percent to 80
percent of the total cost, which can be several million dollars.

One strategy to alleviate these growing problems is system
modeling in which the impact of the major factors that impact
software cost, reliability, and maintenance are explicitly in-
cluded. With an appropriately modeled system, simulation and
trade-off analyses can be performed to optimize the system for
cost while minimizing reliability and maintenance costs.

Here we discuss the impact of hardware on software devel-
opment and report our findings on the impact of a major
multiprocessor hardware component—the interconnection
network—on software cost, reliability, and maintenance. We
believe this work provides a basis to extend current parametric
cost-estimating models to describe real-time multiprocessor
systems.

Processing and Memory Resources Impact
Software Productivity and Quality
It is well known that limitations in processing and memory
resources increase the effort required to develop software.
Under these constraints, developers must deal directly with
the operating system and hardware; therefore, detailed
knowledge of the machine architecture is required. Coding in
low-level languages is often required and high-level develop-
ment tools cannot be used [5]. This effect is expressed in
parametric cost-estimating models applied to software devel-
opment, e.g., Constructive Cost Model (COCOMO), Re-
vised Enhanced Version of Intermediate COCOMO
(REVIC), PRICE S, and SEER-Software Estimating Model.
For example, with the PRICE S model, when processor utili-
zation—defined as the fraction of available hardware cycle
time utilized—is below 0.5, software effort is not affected. As
utilization is increased above 0.5, the required software effort
increases nonlinearly and is 2.33 and 4.0 times higher relative
to nonconstrained utilization when processor utilization is
0.9 and 0.95, respectively (Figure 1). The identical relation-

Impact of Interconnection Network Resources on
Software Productivity, Reliability, and Maintainability

Wes C. Berseth and John A. Neff, University of Colorado
Anis Husain, Defense Advanced Research Projects Agency

Bill Wren, Honeywell Technology Center

Limitations in processing and memory resources are known to adversely affect software pro-
ductivity. Our findings indicate that limitations in interconnection network resources affect
software as much as or more than processing and memory constraints. This work forms a basis
to extend existing software estimation models to describe real-time multiprocessor systems.

Figure 1. Relation between relative software effort (RSE) and processor
utilization as determined from the PRICE S software estimation model [5].

Table 1. Comparison of costs and development time between minimum
hardware cost and minimum total cost scenarios. Percentages are in
parentheses. Data taken from [6].

stsoCerawdraH stsoCerawtfoS tsoClatoT emiTtnempoleveD

muminiM
tsoCerawdraH

$ )11(000,182 $ )98(000,063,2 $ 000,046,2 shtnoM23

muminiM
tsoClatoT

$ )23(000,234 $ )86(002,119 $ 002,343,1 shtnoM82

Software Engineering Technology



CROSSTALK The Journal of Defense Software Engineering 15June 1998

ship is given for memory utilization and software effort [5].
The defect rate, which affects the reliability of the system,
increases in a similar fashion, increasing from 1.8 errors per
thousand lines of code to 2.9 at processor utilization of 0.5
and 0.9, respectively (Figure 2).

Adding Processing and Memory Resources Can
Decrease Software Costs
As part of the RASSP (rapid prototyping of application-spe-
cific signal processors) program, Jim Anderson of the Massa-
chusetts Institute of Technology Lincoln Laboratory used
parametric cost-estimation techniques to examine the effects of
memory and processor constraints on the development costs of
a synthetic aperture radar (SAR) processor [6]. For his model
system, he chose an unmanned air vehicle (UAV) SAR bench-
mark developed at Lincoln Laboratory for the RASSP pro-
gram. According to Anderson, hardware costs can be mini-
mized by supplying enough processing (1 billion floating point
operations per second) and memory resources to meet and not
exceed application requirements. With commercial hardware,
this can be realized with six Mercury MCV6 4 x 4m cards,
each with four 40 megahertz Intel I860 processors and 16
megabytes of Dynamic Random Access Memory. In addition,
a commercial back-plane-mounted crossbar switch, a Motorola
MVME167 system controller card, and a custom radar inter-
face card are required. The resulting processor will have a
memory utilization of 86 percent and processor utilization of
88 percent for a total hardware cost of $281,000 (Table 1).
According to Anderson, these requirements are not unusual for
UAV applications where size, weight, and power must be mini-
mized. However, the software costs and development time
corresponding to the above memory and processor constraints
are $2,360,000 and 32 months, respectively, as determined by
the REVIC software cost estimating model. This cost was
determined by estimating the code to be 8,750 uncommitted
source lines of code, requiring 155 programmer-months, 152
programmer-hours per programmer-month, and $100 per
programmer-hour. With this minimum hardware cost sce-
nario, software development is 89 percent of the total develop-
ment expense of $2,640,000.

Minimizing the total system cost can be achieved by adding
enough hardware resources so that memory and processor

utilization does not have an adverse affect on software cost.
This occurs when both memory and processor utilization are
below 50 percent (Figure 1). This is achieved by increasing the
number of Mercury MCV6 cards from six to 11 with no
change to the rest of the hardware. The result is an increase in
hardware costs by a factor of 1.8, to $432,000, and a decrease
in software costs by a factor of 2.59, to $911,200 (Table 1).
The development time is also decreased from 32 to 28
months. Anderson’s example shows how development cost can
be dominated by software and that a greater investment in
hardware can substantially reduce overall system development
costs. The net result is a superior product at half the cost of the
minimum hardware product.

Interconnection Network Resources Impact
Software Productivity and Quality
Interconnection bandwidth1 has been identified as directly
impacting the ease of programming large supercomputers for
high performance [7, 8]. Consequently, software development
costs can be substantial due to the considerable effort required
to obtain specific optimizations that are highly tuned to the
particular distribution of data and machine [9]. This sentiment
was supported by numerous personal communications with
experts in the supercomputer and real-time embedded digital
signal processing domains. Howard Shrobe has identified lim-
ited bandwidth as one of the “seven deadly sins” of software
engineering [10]. Although it has been recognized that program-
ming multiprocessors is more difficult when interconnection
bandwidth is limited, this relation has not been quantified.

Bisection Bandwidth and Software Productivity
To quantify the relationship between bandwidth constraints
and software productivity, estimates were obtained from ex-
perts experienced in the development of multiprocessor appli-
cations—seven experienced in real-time embedded signal pro-
cessing and one in high-performance supercomputing. In
addition, a questionnaire, developed at the University of Colo-
rado, was used to collect additional information, e.g., impact
on software quality and maintenance, and provide a check on
model estimates. Eleven multiprocessor experts responded to
the questionnaire, including seven of the above eight. We be-
lieve this was a suitable approach to determine the general
relationship between bandwidth constraints and software pro-
ductivity, thus reflecting an industry average. As a measure of
bandwidth constraint, we use bisection bandwidth utilization
(BBU), defined as the average fraction of available bisection
bandwidth2 that is used during data transfers. We believe this
to be a useful measure of the difficulty encountered by a soft-
ware developer, since bisection bandwidth is the critical bottle-
neck when performing global data transfers such as corner-
turn3 operations inherent in digital signal processing
applications. Also, it is consistent with measures of hardware
constraints used in existing parametric cost-estimation models,
i.e., processor and memory utilization.

As a measure of software productivity, we define relative
software effort (RSE) as the ratio of the effort required to de-

Figure 2. Typical relation between processor utilization and defect rate.
Data courtesy of Jim Otte, PRICE Systems.

Impact of Interconnection Network Resources on Software Productivity, Reliability, and Maintainability



16 CROSSTALK The Journal of Defense Software Engineering June 1998

velop software relative to the effort required if bandwidth were
not constrained. A relative measure was chosen to normalize
data and enable pooling from a broad range of application pa-
rameters, such as size of application and programming language.

The relationship between BBU and RSE is given in Figure
3. RSE is not affected until BBU reaches 0.3, beyond which
RSE increases nonlinearly, increasing to 3.8 at a BBU of 0.9.
As BBU approaches 1.0, RSE becomes extremely high and the
relationship is undefined, although in practice other factors
likely become important. Some of the experts interviewed
stated that dramatic increases in software costs initiate other
decisions. For example, the program can be temporarily called
to a halt while the organization waits until faster hardware
becomes available or custom hardware is developed.

These results indicate that bisection bandwidth constraints
have a more dramatic impact on software productivity than
either memory or processor constraints. The adverse impact of
bandwidth constraints sets in at a BBU of 0.3, compared to
0.5 for processor or memory utilization. Also, the RSE is 2.2
for a BBU of 0.8 compared to 1.5 when processor utilization is
0.8 (Figures 1, 3).4

Bisection Bandwidth and Software Quality,
Complexity, and Reliability
The reliability of a system will depend on the quality of the
software, indicated by the defect rate, and it is well known that
defect rates are higher when software becomes more complex
[11]. As with processing and memory constraints, when band-
width is limited, the software becomes more complex, which
results in higher defect rates.5 Often, one is forced to decom-
pose the problem by task as opposed to data domain. Task
parallelism is more asynchronous than data parallelism, intro-
ducing a load balancing problem and making synchronization
more difficult. Also, it is often necessary to write low-level
communication protocols and reduce communication, both of
which are extremely difficult. The code must be made more
efficient, which often requires programming in lower-level
languages such as Assembly, resulting in complex code that is
hard to understand. This can have a significant impact on the
test and integration phase of a system as errors are more diffi-
cult to detect when code is complex. In fact, many errors go
undetected until the operation and maintenance phase.

Bisection Bandwidth and Software Maintenance
Software maintenance, which includes fixing defects and up-
grading functionality, is generally the most costly phase of the
lifecycle [10]. For example, the cost to develop 236,000 lines
of code for an F-16 fighter system was $85 million, whereas
the maintenance cost was $250 million [3]. It is extremely
difficult to fix defects and upgrade functionality on complex
systems. When part of the system is changed, the effect on the
rest of the system must be determined, which requires consid-
erable testing to ensure that the system is fully operable. For
high-reliability systems, 75 percent of the time in an upgrade
cycle is spent in testing and analyses [10]. With a bandwidth-
constrained system, the maintenance phase requires more
effort as the added complexity makes it more difficult to test
the system.6

Upgrading functionality can put increased demands on
communications resources, which results in an increase in the
utilization of available bisection bandwidth, thus making soft-
ware development and testing increasingly difficult7 (Figure 3).
It may also be necessary to reallocate bandwidth on the origi-
nal application to accommodate the added functionality,
which requires additional software design and development. If
bandwidth is constrained in the original application and up-
grades continually require additional bisection bandwidth,
software development will become increasingly more difficult
until upgrades are no longer possible.

Advantages of Additional Communication Resources
Given the substantial impact of bandwidth constraints on
software development and maintenance costs, it may be strate-
gically advantageous to invest in high-bandwidth interconnec-
tion networks or to develop new interconnection technologies.
One promising technology is free-space optics in which data is
transmitted through free space by unguided optical beams.
The Defense Advanced Research Projects Agency (DARPA)
recently initiated the Free-Space Optical Interconnect Accel-
erator Program with the intent to transfer this technology to
military systems.

Besides providing direct savings in software costs, addi-
tional advantages can be realized by increasing bandwidth.
This includes greater capability in Department of Defense
(DoD) radar and imaging applications by enabling communi-
cation-intensive algorithms and by effectively implementing
shared-memory systems. Greater capability may have direct
impact on mission effectiveness, i.e., reduced loss of aircraft
and life, and, therefore, on national security.

It is widely recognized that shared-memory systems are
easier to program than message-passing systems that require
extensive “tuning” to achieve optimal performance through
locality and are more difficult to modify [8]. A shared-memory
machine, with uniform memory access, does not require the
programmer to be concerned about data locality to achieve
optimal performance, which makes it easier to develop, main-
tain, and reuse code. However, to effectively implement local-
ity independence and make dynamic load balancing effective, a
high bandwidth interconnection network is required [8].

Figure 3. Relation between RSE and BBU.

Software Engineering Technology



CROSSTALK The Journal of Defense Software Engineering 17June 1998

Multiprocessor Model for
Software and System Cost
Optimization
A number of parametric models have
been developed to estimate software
development costs for uniprocessors.
These models can be used to estimate
software effort and related factors such as
schedule length once one determines the
size of the software and attributes inher-
ent in the project and development
process, including
• Product complexity and reliability

requirements.
• Memory and processor constraints.
• The level of application and program-

ming experience of the employees.
• The use of modern programming

practices and development tools.
To apply these models to multipro-

cessor systems, the impact of the inter-
connection network is included implic-
itly through attributes such as product
complexity. However, this does not en-
able one to exploit the full benefits of
modeling, i.e., trade-off analyses, to
optimize software and system costs. For
meaningful optimization, the relations
between individual multiprocessor hard-
ware components (processors, memory,
and interconnection network) and soft-
ware productivity and quality must be
explicitly included in the model. Addi-
tional factors to consider are the number
of processors and the interdependencies
between major hardware components,
e.g., to accommodate for bandwidth
constraints requires increasing processor
and memory requirements.

Developers of real-time multiproces-
sor systems have expressed a desire for
such a model. A model of this nature
should be extremely useful for the rapid
design and prototyping of cost-effective
real-time multiprocessing systems. It
would enable trade-off analyses to be
made in the early stages of the develop-
ment cycle, e.g., conceptualization, and
would support decisions on high-level
issues such as technology choices. It
would also be desirable to include the
maintenance phase in a real-time em-
bedded software estimation model. This
would allow one to optimize for up-
grades and enable trade analyses based
on the entire lifecycle of the system. We

believe a modeling tool of this nature
would produce substantial savings in
costs over the lifecycle of an application.

Summary
Existing models, developed for
uniprocessors, consider processing and
memory constraints but do not consider
parameters unique to multiprocessors
such as bisection bandwidth constraints
or number of processors. We have found
that bisection bandwidth constraints
impact software development as much as
or more than processing and memory
constraints. For this reason, the impor-
tance of bisection bandwidth should not
be overlooked when estimating software
costs for real-time embedded multipro-
cessors.

This work provides a basis to extend
existing parametric software cost-esti-
mating models to describe real-time
embedded multiprocessor systems. Such
a model would make it possible to per-
form trade analyses to optimize system
cost and performance, which will lead to
substantial savings in development and
maintenance costs, increased perfor-
mance, and easier upgrades. u

Acknowledgments
A number of people contributed to this
work. Special thanks to Jim Otte, of
PRICE Systems, for useful discussions
on cost-estimation relationships in para-
metric models and software effort data.
We also thank Barbara Yoon for provid-
ing information on application domains
to pursue and people to contact. This
work was supported by DARPA under
contract F30602-96-2-0234, managed
by Rome Laboratory, Optoelectronic
Computing Systems Center.

About the Authors
Wes C. Berseth is a
professional research
associate of the Opto-
electronic Computing
Systems Center at the
University of Colorado.
His research includes

the application of optoelectronics to
imaging and communications systems
from an architectural, performance, and
cost perspective including the impact of

hardware resources on software produc-
tivity and quality. He is currently princi-
pal investigator of modeling and simula-
tion on a DARPA-sponsored Free-Space
Optical Interconnect Accelerator Pro-
gram. He has a bachelor’s degree and a
master’s degree from York University,
Toronto, Canada, and holds a doctorate
in physics from York University. He is a
member of the American Physical Soci-
ety, Association for Computing Machin-
ery, and the Institute of Electrical and
Electronics Engineers (IEEE).

Optoelectronic Computing Systems Center
Campus Box 525
University of Colorado
Boulder, CO 80309-525
Voice: 303-492-0478
Fax: 303-492-3674
E-mail: wberseth@colorado.edu

John A. Neff is director
of the Optoelectronic
Computing Systems
Center at the University
of Colorado. Before
joining the University
of Colorado in 1991, he

was the research manager for optical
computing at DuPont. Prior to joining
DuPont in 1988, he spent 15 years as a
program manager for optical computing
with the DoD, first with the Air Force
Office of Scientific Research, then with
DARPA. He has a bachelor’s degree in
physics and in mathematics from Ohio
Wesleyan University and a master’s degree
and doctorate in electrical engineering
from Ohio State University. He is a fel-
low and past governor of the Society of
Photo-Optical Instrumentation Engi-
neers and is a fellow of the Optical Soci-
ety of America. He is listed in
Strathmore’s Who’s Who of Business
Leaders.

Director
Optoelectronic Computing Systems Center
University of Colorado
Campus Box 525
Boulder, CO 80309-0525
Voice: 303-492-7135
Fax: 303-492-3674
E-mail: jneff@colorado.edu

Anis Husain is assistant director of the
Electronics Technology Office at
DARPA. From March 1994 until May
1997 he served as program manager of
optoelectronics in the DARPA Microelec-
tronics Technology Office (MTO) re-

Impact of Interconnection Network Resources on Software Productivity, Reliability, and Maintainability



18 CROSSTALK The Journal of Defense Software Engineering June 1998

sponsible for research and development
in optical interconnects, free space optical
interconnects, visible emitters and detec-
tors, and high-density optical memory.
Prior to this, he was affiliated with the
Center of High-Performance Computing,
Worcester Polytechnic Institute, Boston,
Mass. as an on-site consultant to
DARPA/MTO. From 1980 to 1995, he
worked for Honeywell Technology Cen-
ter as supervisor of media and network
architecture and section manager of
photonics. He has a bachelor’s degree in
electrical engineering from Imperial
College, University of London, United
Kingdom and holds a doctorate from
University College London, United King-
dom. He is a member of the IEEE, IEE,
Optical Society of America, Computer
Society, Communications Society, and
Lasers and Electrooptics Society.

Optical Micro-Machines, Inc.
6160 Lusk Blvd., Suite C205
San Diego, CA 92121
Voice: 703-758-2622
Fax: 619-642-0490
E-mail: ahasain_omm@ibm.net

Bill Wren is a principal research scientist
at the Honeywell Technology Center in
Minneapolis, Minn. He has broad expe-
rience in scalable real-time processor
architecture design, system modeling
and trades, digital design, signal process-
ing design and programming, software
architecture design, and program man-
agement. He has a bachelor’s degree in
electrical engineering from the Univer-
sity of Nebraska. His graduate studies
included work at Arizona State Univer-
sity, and he received a master’s degree in
electrical engineering from the Univer-
sity of St. Thomas, where he studied
software systems.

Honeywell Technology Center
18820 DeAnn Circle
Minnetonka, MN 55345
Voice: 612-951-7885
E-mail: wren_bill@htc.honeywell.com

References
1. Donahue, Lt. Gen. William J., “Infor-

mation Dominance Through Software
Technology,” CROSSTALK, STSC, Hill Air
Force Base, Utah, July 1997, pp. 3-4.

2. Stutzke, Richard D., “Software Estima-
tion Technology: A Survey,” CROSSTALK,
STSC, Hill Air Force Base, Utah, May
1996, pp. 17-22.

3. Bunza, Geoff J., “A Journey into Parallel
Worlds: Exploring Hardware/Software
Systems Integration,” Embedded Systems
Conference, San Jose, Calif., September
1996, Miller Freeman.

4. Bartow, James, “Evolutionary Design of
Complex Systems,” Investments in
Avionics and Missiles Software Technology
Workshop Report, ARPA/SISTO, Soft-
ware Productivity Consortium, Inc.
Report SPC-95068-CMC, 1995.

5. Minkiewicz, Arlene and Anthony
DeMarco, “The PRICE Software
Model,” PRICE Systems, June 1996.

6. Anderson, James. C., “Projecting
RASSP Benefits,” Proceedings of the 2nd
Annual RASSP Conference, ARPA,
Arlington, Va., 1995, pp. 65-72.

7. Accelerated Strategic Computing Initiative
(ASCI) PathForward Project Description,
Dec. 27, 1996, http://www.llnl.gov/
asci-pathforward.

8. Probst, D.K., “Architectural Visions
Versus Business Models: How Soon
Will There Be Enabling Technologies
for Petaflops Computing?” Report
prepared for Gil Weiland at DoE/DP-
07 [HQ] December 1995.

9. Blelloch, Guy E., B.M. Maggs, and
G.L. Mile, “The Hidden Cost of Low
Bandwidth Communication,” Develop-
ing a Computer Science Agenda for High-
Performance Computing, ACM Press,
1994, pp. 22-25.

10. Shrobe, Howard, “Evolutionary Design
of Complex Software,” Investments in
Avionics and Missiles Software Technology
Workshop Report, ARPA/SISTO, Soft-
ware Productivity Consortium, Inc.
Report SPC-95068-CMC, 1995.

11. Jones, Capers, Applied Software Mea-
surement: Assuring Productivity and
Quality, 2d ed., McGraw-Hill, New
York, 1997.

Notes
1. Bandwidth is defined as the rate at

which an interconnection link can
transfer information. For digital systems
it is measured in bits per second.

2. Bisection bandwidth provides a measure
of the communication resources of the
network. For a symmetric network,
bisection bandwidth is determined by
dividing the interconnection network
into two equal parts, each with half the
processing nodes, and summing the
bandwidth of all lines crossing the
dividing line.

3. The corner-turn, also called a transpose,
is an “all-to-all” communication opera-
tion in which the processors on the
network send data to each other in
preparation for the next computation
operation. This operation is important
in certain signal-processing applications,
e.g., two-dimensional fast Fourier trans-
form and SAR, and can severely over-
load the network and stall computation.

4. This was supported by the question-
naire as seven of 10 claimed that bisec-
tion bandwidth constraints can affect
software development as much as or
more than memory constraints, and
eight of 10 claimed that software devel-
opment is affected as much as or more
than when processing is constrained.

5. Ten of 11 experts surveyed claimed that
bandwidth constraints increase software
complexity and six of six claimed that
bandwidth constraints affect defect rate
by making code more complex.

6. Eight of 10 experts interviewed stated
that bandwidth constraints make the
maintenance phase more difficult be-
cause the added complexity makes it
more difficult to test the system.

7. Seven of 11 experts interviewed stated
that adding new functionality to a previ-
ously developed application will use
additional bandwidth. The remaining
four said it can, depending on whether
the tasks are scheduled concurrently.

Software Engineering Technology


